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Abstract: In Bayesian statistics, Highest Posterior Density Regions (HPDR) measure the
uncertainty of parameter estimates at a given credibility level. HPDRs are the Bayesian
version of Highest Density Intervals (HDI) based on the posterior probability. The calculation
of Percentile Intervals (PI) is a common method for approximating HDIs in many popular
Python toolboxes. The PI calculation differs from the HPDR calculation as it ignores the
posterior probability by simply cutting the lower and upper values of the marginalized posterior
distribution symmetrically. Here, we use the phenomenological retarded transient functions to
infer the posterior distribution of a clinical dataset. The one-dimensional HPDR projections
were compared to the PIs for all inferred parameters. The direct comparison revealed that
the one-dimensional HPDR projections of all inferred parameter posteriors exceeded the
percentile-based intervals, demonstrating that the PIs were overconfident. Overall, we argue
that only HPDRs can be interpreted in terms of probability.

Data availability: Data and code is available on DaRUS (https://doi.org/10.18419/
darus-4068).
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1. INTRODUCTION

The combination of randomness, inter-individual differ-
ences, and typically sparse datasets complicates accurate
inference in biomedicine. Uncertainty quantification con-
siders these factors and enables reliable decisions based
on limited data. For example, the recommendation for
RNA sequencing is to have between six and 12 biolog-
ical replicates (Schurch et al., 2016). In practice, many
molecular biological experiments are conducted with only
three replicates (Ma et al., 2004; Mishra et al., 2011;
KB et al., 2017). Ill-posed inverse problems result from
this sparse data, i.e., the data does not contain enough
information to estimate model parameters accurately. To
make decisions in this sparse data setting, the uncertainty
has to be quantified reliably.

Summary statistics, such as the Highest Density Interval
(HDI) of inferred model parameters, are one established
way to evaluate uncertainties. A HDI has two proper-
ties: (i) the probability density inside the interval is at
least as high as outside of the interval, and (ii) it has
the shortest length for a given cumulative probability of
α% inside the interval (Box and Tiao, 1992). However,
different approximations of these statistics can result in
quite different uncertainty estimates. Here, we focus on the
Highest Posterior Density Regions (HPDR) and Percentile

Fig. 1. Characterization and calculation of the
HPDR. A. HPDR (red) and PI (blue) for a one-
dimensional bimodal distribution. Only the HPDR is
split between the two modes, while the PI is bound
symmetrically. B. The HPDR can be estimated from
posterior samples according to their posterior values.
The (100 − α)% samples with the lowest posterior
probability are cut.

Intervals (PI) as Bayesian uncertainty summary statistics
examples.

In Bayesian inference, random variables describe the pa-
rameters θ of simulation models s(θ). A posterior parame-
ter distribution p(θ|D) is inferred, given a prior parameter
distribution p(θ), the observed data D, and the simulation
model. Bayes’ Theorem is employed to obtain the posterior
distribution

p(θ|D) ∝ p(D|θ) · p(θ), (1)
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where p(D|θ) is the likelihood of observing the data D
given a parameter θ.

HPDRs are specific to posterior distributions, covering α%
of the posterior probability mass. Property (i) of HDIs is
adjusted for HPDRs to the samples’ posterior probability,
which also corresponds to the density of the posterior
distribution: The posterior probability of each point inside
the HPDR must be higher than anywhere outside the
interval. In contrast, PIs of one-dimensional distributions
are symmetrically bounded by cutting ( 100−α

2 )% of the
samples, resulting in the [z 100−α

2
, z100− 100−α

2
] percentiles.

PIs and HPDRs are equal for one-dimensional unimodal
and symmetric distributions. However, the bounds of PIs
and HPDRs differ when applied to bimodal or skewed
distributions. In particular, PIs will never be split for the
two modes (Fig. 1A), while this might be the case for
HPDRs if the posterior probability between the two modes
is too low. For bimodal distributions, PIs violate HDI
property (i) because regions of high probability density
are excluded, while low-density regions are included in the
PI. This violation can disguise valuable information about
the underlying process and model properties. Further,
the PI calculation can be inaccurate under non-ideal
conditions. In practice, these conditions might be a not
wholly converged Markov Chain Monte Carlo (MCMC)
chain, the limitation of drawing only a finite number of
samples, or boundary artifacts. Still, PI calculation is
often applied as it is computationally and mathematically
simple.

Both PIs and HPDR are used to approximate HDIs of
single parameters, in practice. While PIs are always con-
tinuous, HPDR can be split several times. On the marginal
parameter level, we report the maximum uncertainty of the
HPDR (HPDRmax), corresponding to the outer bounds of
the HPDR. The HPDRmax, therefore, violates the HDI
properties whenever the actual HPDR is split into several
subintervals and is only a summary statistic of the outer
or maximum uncertainty.

In this study, we analyze a clinical dataset on liver re-
generation after hepatectomy (Fig. 2A). Hepatectomy is
performed to remove benign and malignant lesions. The
liver is the organ with the greatest regeneration capabili-
ties, allowing the regeneration of the pre-operative liver
volume within weeks. The dataset contains 24 patients
with extended partial liver resection, varying in age, with
and without comorbidities, postoperative complications,
and medications (ZeLeR-study, ethical vote: 2018-1246-
Material). Liver volumes were obtained from computed to-
mography (CT) measurements and normalized according
to the preoperative liver volume for each patient.

In clinical settings, it is crucial to report accurate un-
certainties and prevent overconfidence when treatment
strategies or research are based on model predictions. The
risk judgment for a distinct treatment can only be accu-
rate if the clinician’s information about this and possible
alternative procedures is accurate (Chen and Asch, 2017).
Ultimately, this information is crucial for people’s well-
being (Kappen et al., 2018).

Fig. 2.Regeneration after partial hepatectomy. A. In
hepatectomy, a part of the liver is resected. The liver
remnant completely restores its preoperative volume
in a successful regeneration. B. Posterior ensemble
prediction of 10,000 90% Highest Posterior Density
Region samples (blue) with the maximum a posteriori
estimate (black line) and the normalized liver volume
data (black circles).

2. RESULTS

In practice, Bayesian posteriors p(D|θ) are difficult to
compute analytically. MCMC sampling is frequently used
to sample from the posterior, resulting in a set of accepted
parameter samples {θki }, with k = 1, ...,K parameters
and i = 1, ..., I samples. The accepted parameter samples
are proportional to the posterior probability p(θ·i|D) ∝
p(D|θ·i) · p(θ·i).
This paper focuses on the sample-based calculation of HP-
DRs and PIs. The HPDRs are calculated by first sorting
the converged joint samples θki according to their posterior
probability. Subsequently, the (100−α)% samples with the
lowest posterior probability are cut, resulting in an α%
HPDR (Algorithm 1 and Fig. 1B).

Sample-based PIs are calculated by symmetrical cutting
( 100−α

2 )% from the empirical cumulative distribution of
each parameter marginal separately (Algorithm 2).

2.1 Bayesian Inference of the clinical data using retarded
transient functions

To describe liver regeneration, we use the Retarded Tran-
sient Functions (RTF) of Kreutz (2020) with identical
response times of the transient and sustained response (t1):

sRTF (t) = Asus

(
1− e−

t
t1

)
︸ ︷︷ ︸
sustained response

+Atrans

(
1− e−

t
t1

)
e−

t
t2︸ ︷︷ ︸

transient response

+p0

(2)
and transformed time

t = log10

(
10

treal· 10
Trange + 10Tshift

)
− log10

(
1 + 10Tshift

)
.

(3)
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Algorithm 1Marginal maximum HPDR calculation from
posterior samples

Given a converged joint posterior parameter sample θki
with k = 1, ...,K parameters and i = 1, ..., I samples.

1: Sort samples θ·i descending by their posterior proba-

bility p(θ·i|D) to get the sorted samples θ̃.
2: Remove samples with index i higher than ⌈α% · I⌉:

˜̃
θ = {θ̃·i, i ≤ ⌈α% · I⌉}

3: for k = 1, ...,K: do
4: Calculate lower and upper uncertainty bounds:

5: kl = mini(
˜̃
θki )

6: ku = maxi(
˜̃
θki )

7: The α% HPDRmax of parameter k is [kl, ku]
8: end for

Here, ⌈x⌉ denotes rounding to the nearest integer
higher than x.

Algorithm 2 Marginal PI calculation from posterior
samples

Given a converged joint posterior parameter sample θki
with k = 1, ...,K parameters and i = 1, ..., I samples.

1: for k = 1, ...,K: do
2: Sort marginal vector θk· by value to get the sorted

marginal samples θ̂k·
3: Calculate the lower and upper percentile bounds:

4: kl = θ̂k
[
⌊ 100−α

200 · I⌋
]

5: ku = θ̂k
[
⌈ 100+α

200 · I⌉
]

6: The PI of k is [kl, ku]
7: end for

Here, ⌈x⌉ denotes rounding to the nearest integer
greater than x and ⌊x⌋ denotes rounding to the nearest
integer smaller than x.

RTFs can describe various biological processes without re-
quiring a priori knowledge about the underlying metabol-
ics. Computationally, RTFs are advantageous over ordi-
nary differential equations as they can be evaluated di-
rectly without numerical integration. For a general process
description, a sustained and a transient response function
are added with amplitude parameters Asus and Atrans,
response time t1, decay time t2, and an initial offset p.
The time transformation allows for delayed responses, for
example, starting after several postoperative days. We
assume an immediate response as the hepatectomy is per-
formed directly after preoperative liver volume assessment
(Tshift = −2). The observed data has a range of 177 days
(Trange = 177) and shows huge variability as discussed in
Höpfl et al. (2024). As the liver volume per patient was
normalized to 1 preoperatively, the offset parameter p was
set to 1.

We assume independent and identically distributed noise
with normally distributed measurement errors arising from
the measurement method. The noise was calculated as the
standard deviation of the complete dataset with σ = 0.226.
For T observed days and N replicates, we obtain the
following likelihood function p(D|θ):

p(D|θ) =
T∏

k=1

N∏
j=1

1√
2πσ

exp

(
−
(
s(tk, θ)−m(j)(tk)

)2
2σ2

)
.

(4)

Equation (4) is a standard likelihood, penalizing the
squared distance between the simulated value s(tk, θ) at
time tk and the measurement of the j-th replicate at that
time m(j)(tk).

A uniform prior distribution with wide bounds according
to Kreutz (2020) was used for the amplitude of the
sustained response Asus and the response time of the
transient and sustained responses t1 as these parameters
are specific to the size of the resection performed in this
study. For the amplitude of the transient response Atrans,
a normally distributed prior with the average resected liver
volume as mean was used. Further, it is known that the
human liver can restore its functional mass within two
weeks after up to 66% partial hepatectomy (Koniaris et al.,
2003). Therefore, a normal distribution with a mean of 14
days was used for the prior of the transient response decay
time t2. Negative response times were excluded as they are
unphysiological. A reproducible version of the parameter
estimation problem in the PEtab format (Schmiester et al.,
2021) can be found on DaRUS (https://doi.org/10.
18419/darus-4068), including all results and a validation
with a broader normal prior distribution.

For Bayesian inference, ten million MCMC samples
were drawn with the adaptive metropolis sampler of
pyPESTO (Schälte et al., 2021), leading to an effective
sample size of 151,069. The posterior was estimated for
the parameters

θ = (Asus, Atrans, t1, t2). (5)

Geweke’s diagnostic was used to remove burn in samples.
The Posterior ensemble prediction of the 90% HPDR
shows that the RTF captures the data and uncertainty
with good accuracy (Fig. 2B).

2.2 Connection of the posterior samples in the joint space
is cut by percentile interval calculation

Using HPDR-based posterior samples ensures the samples
are connected in the joint posterior space. In contrast,
PIs are cut on the one-dimensional marginals, removing
the joint connection of posterior samples whenever only
one marginal parameter value exceeds a PI bound. This
loss of the joint connection is demonstrated on a two-
variate normal distribution (Fig. 3A). The elliptical HPDR
represents the covariance of the 2D normal distribution.
On the marginals, this covariance structure is not visible.
The PIs cut α% of the samples in each marginal. On
the joint space, this affects more than α% of the samples
as sometimes the value for one parameter dimension is
cut while it persists for the other. In total, 16 out of
100 samples (Fig. 3A, samples with red edge color) were
excluded by at least one marginal bound, while only 10
samples in total were excluded by the HPDR (Fig. 3A,
grey samples). This difference in affected samples explains
why the estimated maximum bounds of the HPDRs exceed
the PI bounds.

While PIs only use the parameter value of each sample dur-
ing computation, HPDRs use the additional dimension of
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Fig. 3. 2D comparison of PIs and HPDRs A. PI
bounds (red dashed) and HPDR (blue dashed ellipse)
of 100 samples of a two-variate normal distribution.
The maximum HPDR uncertainty is the projection
of each dimension’s outer highest posterior density
samples. Blue samples are part of the HPDR, the
HPDR excludes grey samples, and the PIs exclude
samples with red edge color. B, C. Converged full
posterior samples (grey), 90% HPDR samples (blue),
and marginal PI bounds (red dotted) for the Asus-
Atrans, and t1-t2 scatter of the liver regeneration
example.

the joint samples’ posterior probabilities. HPDRs remove
samples based on the posterior probability. Therefore,
samples in the center of the posterior distribution can also
be removed if their posterior probability is lower than the
credibility level (Fig. 3B, C). For our inferred posterior dis-
tribution, the t1 PI, for example, cuts all t1 marginal values
above 0.03 while the t2 values above this threshold are still
included in the t2 PI between [0.88, 40.59] (Fig. 3B).

2.3 Percentile intervals underestimate the maximum
uncertainty

Removing parameter combinations in the joint space can
result in split marginal intervals. This split occurs because
parameter values in the center of the marginals can be
removed. Strictly, one could argue that the HPDR needs
to end at every removed parameter sample in the marginal
space. Terminating HPDRs at every removed value would
lead to many split intervals for the marginal parameter. To
calculate the maximum uncertainty, this is practically un-
desirable, and detecting split intervals increases the needed
computational effort. Therefore, we projected the lowest
and highest HPDR parameter values in each dimension,
giving a maximum uncertainty interval (HPDRmax) per
parameter to compare HPDRs to the PIs.

The maximum uncertainty, for a parameter k is defined

by [mini(
˜̃
θki ), maxi(

˜̃
θki )], i.e., the lower and upper marginal

HPDR bounds for parameter k at a given credibility level
α (Algorithm 1). For more advanced methods for HPDR
estimation from samples, we refer to Held (2004). We

Fig. 4. Comparison of the PIs and HPDRmax of the
liver regeneration example. Kernel density esti-
mates of the full converged chain (shaded grey), 90%
PIs (between red dotted lines), and 90% HPDRmax

(between blue dotted lines, blue line) for: A. the
sustained response amplitude Asus, B. the transient
response amplitude Atrans, C. the response time of
the transient and sustained response t1, and E. the
decay time of the transient response t2.

are aware that this maximum uncertainty region might
comprise several split HPDR subintervals. However, for
many clinical applications, decisions are based only on
maximum uncertainty. For those decisions, it is most
important not to underestimate the uncertainty.

Looking at the marginal parameter space, there is a
vast difference between the PI bounds and the HPDRmax

(Fig. 4A-D and Table 1). All marginalized HPDRs exceed
the calculated PIs. The 90% HPDRmax exceeds the 90% PI
between 25-245% for the parameters of our on the clinical
dataset calibrated RTF (Table 1). The absolute difference
in the HPDR and PIs bounds increases with the skewness
of the marginal distributions. This increase persists for
all marginals, with slightly heavy tails on the upper or
lower boundary (Fig. 4A-D). Larger HPDRs show that the
marginal PIs underestimate the maximum uncertainty in
this real-world setting. Therefore, reporting and drawing
conclusions based on percentile HDI approximations tends
to be overconfident. In decision-making and uncertainty
quantification based on marginal parameter values, only
the HPD-based regions are based on posterior probability.
Therefore, we argue that only the HPDR can be inter-
preted in terms of probability.

One example of a critical decision based on this liver
resection data is assessing the regeneration time. The
regeneration time, i.e., the time in which the liver regrows,
can be approximated by the transient response decay
contestant t2. Knowing the uncertainty of this parameter
could indicate when regeneration has failed, additional
measures to aid regeneration should be taken, or when
subsequent procedures could be scheduled. The maximum
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Table 1. 90% PI, 90% HPDRmax, and
length increase of the HPDR compared
to the PI of the estimated liver regener-

ation parameters.

parameter 90% PI 90% HPDRmax length increase

Asus [−0.22, 0.88] [−0.34, 1.32] 51%
Atrans [−1.22,−0.12] [−1.67, 0.07] 58%

t1 [0.001, 0.03] [4 · 10−8, 0.1] 245%
t2 [0.88, 40.59] [0.03, 49.81] 25%

regeneration time with 90% credibility is about 41 days for
the PI and about 50 days for the HPDR. This difference
of nine days could lead to overconfident decisions and
implicate premature follow-up treatments.

2.4 Parameter scatters indicate partly correlated response
amplitudes

The amplitude parameters Asus and Atrans are negatively
correlated (Fig. 5). This correlation holds for a narrow
range of relative liver weight in [−3, 1] for Atrans and
[−1, 3] for Asus. In this range, the sustained part can
compensate for the transient part and vice versa. This
correlation might indicate that our observed data is in-
sufficient to strictly separate the effect of the transient
and sustained response in the first postoperative days.
The response time parameters are not correlated but ran
to their lower physical bound at zero, indicating a rapid
volume decrease after resection, which is expected.

Fig. 5. Sampling scatter of the estimated liver
regeneration parameters. Ten million MCMC
samples were drawn from the posterior distri-
bution with the adaptive metropolis sampler of
pyPESTO (Schälte et al., 2021), leading to an ef-
fective sample size of 151,069. Geweke’s diagnostic
was used to remove burn in samples. Every 100th
parameter value of the posterior chain is displayed.

3. DISCUSSION

Approximating HDIs for posterior parameters based on
marginal PIs can lead to overconfident estimates of the
maximum uncertainty. This overconfidence appears when-
ever parameter combinations in the center of marginal
distributions have lower posterior probability than at the
margins. Using one-dimensional HPDRs in these cases
is more accurate since the calculation is based on the
probability of the joint posterior distribution. Using the
maximum HPDR instead of PIs increased the outer inter-
val bounds on a model for liver regeneration after hepate-
ctomy calibrated to a clinical dataset. We argue that only
using HPDRs allows the interpretation of the intervals in
terms of probability, as PIs are not based on the posterior
probability.

We showed that using PIs to estimate and assess un-
certainties might create a false impression of the maxi-
mum uncertainty. Ultimately, underestimated uncertainty
might lead to wrong decisions in the clinics, where phar-
macokinetic parameters can be decisive for a particular
procedure. Here, the decay time of the transient response
could be interpreted as an estimate of the time patients
need to regenerate. If this time is underestimated, follow-
up procedures could be initiated prematurely. Therefore,
practitioners should always ensure to report reliable uncer-
tainty estimates that do not underestimate the maximum
uncertainty. Our current dataset is sparse and has too
many confounding factors to reliably support such deci-
sions. Nevertheless, this example serves as an illustration.

In low dimensional settings, PIs approximate HDIs rea-
sonably whenever the posterior is smooth and unimodal,
and parameters are not correlated. Further, PIs can be
used to approximate central tendencies. We expect that
the overconfidence of PIs increases with the dimensionality
of the parameter space as more parameter combinations
are possible there. In addition, correlated parameters or
non-identifiabilities can increase the difference between the
HPDRs and PIs. Here, the HPDR might include the com-
plete range of the correlated or non-identifiable parameter,
while the PI is cut by 100−α

2 % symmetrically.

State-of-the-art Bayesian Python libraries, including Arviz
(Kumar et al., 2019), approximate HDIs with percentiles
per default. This might have led to the report of multiple
overconfident credibility intervals in the literature, as
described by Caspi et al. (2023) in the inference of RNA
virus haplotypes mutation rate, selection, and epistasis,
for example. Therefore, one should always be aware of the
method used to approximate HDIs.

Computationally, the cost of our pragmatic approach to
calculating HPDRs is about the same as calculating PIs.
While HPDR is calculated by simply cutting samples
based on a lower posterior probability threshold, this gives
only an approximation of the maximum uncertainty as the
algorithm does not so far include the detection of split
interval regions. Including the detection of split intervals
would increase the computation time and will be part of
our future work.
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4. CONCLUSION AND OUTLOOK

HPDR in Bayesian inference improves sampling diagnos-
tics and provides a more accurate way of communicating
probabilities. In particular, the HPDR is the only measure
to get precise estimates of the maximum uncertainty. For
a clinical dataset on liver resection, all marginal HPDRmax

exceeded the corresponding PIs, showing the PIs were
overconfident. We provide a simple algorithm to calculate
the HPDR sample-based and plan to incorporate these im-
provements in the pyPESTO Python toolbox for Bayesian
Inference (Schälte et al., 2021). Ultimately, the aim should
be to computationally efficiently detect split HPDR and
move from the maximum HPDR to the actual HPDR.
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