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Abstract:
Morphogenesis, the process of cells forming a defined shape, is central during embryonic
development. Among other cues it involves diffusible signaling molecules, known as morphogens,
and concentration-dependent cellular responses to these molecules. Recent advances in synthetic
biology have enabled the isolated design and study of cellular systems that mimic morphogenesis.
Here, we build on a system from Toda et al. (2020) that uses a synthetic Notch morphogen
circuit to trigger and modulate gene expression. Following our vision of a model-based design
of different cellular shapes and patterns, we present extensions of this framework based on the
current synthetic Notch signaling capabilities described in the literature. We show first results
of implementing morphogen-dependent proliferation as a particular example. The proliferation
triggered by the morphogen modulates the steepness of the morphogen gradient, which directly
translates to the signal readout. Furthermore, our modeling framework allows us to consider and
design patterns in 2D that can be modulated by varying the size and location of the morphogen
source and those of the interacting molecules, such as morphogen inhibitors. This bottom-up
engineering approach opens up opportunities to better understand the underlying principles of
morphogenesis and to design complex tissues with desired functions.
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1. INTRODUCTION

Recent developments in synthetic biology promise to en-
able the modeling-aided design and implementation of
building blocks made up of isolated functional modules
called synthetic circuits. One of those building blocks is
the synthetic Notch (synNotch) platform based on wild-
type Notch receptors (Morsut et al., 2016). While wild-
type Notch activation requires its ligands to be presented
by an adjacent cell (Kopan and Ilagan, 2009), synNotch
can be modulated to react upon soluble ligand binding
(Smyrlaki et al., 2024).

Wild-type Notch receptors have a large extracellular bind-
ing domain for their ligands, proteins of the Delta fam-
ily, which are presented by opposing cells, and an intra-
cellular transcription regulatory domain that is released
upon binding and activates genes that play a role in
cell-cell signaling (Kopan and Ilagan, 2009). The syn-
Notch platform introduced by Morsut et al. (2016) re-
tains the Notch core domain, while the ligand-binding
and intracellular domains can be freely selected. This
allows to build circuits with a customizable sensor, the
ligand-binding domain, and a customizable effector, the
intracellular domain (Fig. 1A). Toda et al. (2020) in-
troduced synthetic Notch circuits that mimic the behav-
ior of morphogens. Morphogens are long-range signaling
molecules that play a vital role during the development
of an organism by providing positional information for

the individual cells (Wolpert, 1969). They are produced
and secreted by one cell type and form a concentration
gradient. Other cells respond to the local concentration,
which depends on their position relative to the source, by
activating different target genes dependent on their own
state. This results in multiple areas of cells with different
gene expression patterns and is commonly conceptualized
by the French flag model, where the three stripes represent
three distinct cell fates (Wolpert, 1969). In nature, cells
integrate many exterior signals, and cell fate is controlled
by the complex interplay and cross-talk mechanisms be-
tween these multiple signal transduction pathways. The
possibility of developing new synthetic circuits that mimic
these processes and artificially add more complexity will
help to better understand the biological design principles
of morphogenesis.

One particular synNotch circuit is schematically depicted
in Fig. 1B. Secretor cells produce and secrete green flu-
orescent protein (GFP), the morphogen in this context.
While unbound GFP diffuses freely, anchor cells can bind
and thereby trap unbound GFP. When receiver cells are
presented with the GFP-anchor-cell complex, they pro-
duce the red fluorescent protein mCherry, visualized by
a red-colored cell. Similar to the experimental setting in
Toda et al. (2020), a morphogen gradient can be produced
by seeding a cell culture well of GFP-secretor cells on
one side (the GFP pole) and a mixture of anchor and
mCherry-producing receiver cells on the other (the body)
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Fig. 1. The synNotch platform enables synthetic
morphogen circuit designs (adapted from Mor-
sut et al. (2016); Toda et al. (2020)). A: The syn-
Notch platform consists of customizable sensor and ef-
fector domains (Morsut et al., 2016). B: One synNotch
system from Toda et al. (2020): This synNotch circuit
describes a morphogen-like system using a sensor for
a green fluorescent protein (GFP) and a transcription
activator for a red fluorescent protein (mCherry) as an
effector. Receiver cells that sense bound GFP become
red. C: Spatial signal readout in the x-direction (1D)
at three time points for green GFP and red mCherry
signal illustrating similarity to morphogen gradients.
Rectangles in the top part illustrate the division of the
spatial domain into compartments that are used for
the model simulation (Eq. 1). D: System modifications
such as adding an inhibitor pole (pink) allow for an
amplitude or range shift for both signals (GFP and
mCherry) depending on the inhibitor amount and the
binding kinetics.

(Fig. 1C). GFP produced in the GFP pole can diffuse into
the body, where it is trapped by anchor cells and triggers
mCherry expression. The resulting GFP gradient is trans-
ferred directly to a gradient in the mCherry expression.
If GFP and mCherry are degraded, the system converges
to a steady state with gradual GFP concentration and
mCherry signal. These gradients can further be shaped
by introducing a morphogen inhibitor source, as described
by Toda et al. (2020) and indicated in purple in Fig. 1D,
resulting in a lower and steeper mCherry signal gradient.

We use the synthetic morphogen system of Toda et al.
(2020) as a basis for a flexible in silico design with respect
to a spatio-temporal distribution of the readout signal and
cell proliferation. Therefore, we extend the computational
reaction-diffusion model introduced by Toda et al. (2020)
in two directions. Firstly, we use synNotch to trigger cell
proliferation through the morphogen. A simple Verhulst
model is employed for this purpose. Secondly, we expand
the design space by extending the model from one dimen-

sion to two dimensions. This allows us to generate a wide
range of shapes and signals through flexible geometric
arrangements of the poles and the body. Together with
other design variables such as cell densities and pole sizes,
we thus present an in silico toolbox for the flexible design
of synthetic morphogenesis.

2. RESULTS

Toda et al. (2020) introduced a computational model
representing the morphogen circuit depicted in Fig. 1B.
It describes the dynamics of four time-dependent chem-
ical species in one spatial dimension: The freely diffus-
ing, unbound morphogen (M), represented by GFP, in-
teracts with an inhibitor (I) with the same diffusion co-
efficient. In particular, they can bind together, creating
the morphogen-inhibitor complex Î. M̂ encodes the com-
plex of morphogen and anchor cell and produces a non-
diffusing signal represented by the red fluorescent protein
(mCherry). The system evolves according to the governing
partial differential equations
∂M

∂t
= D∇2M︸ ︷︷ ︸

diffusion

+ kmsrcCM︸ ︷︷ ︸
production

− kdegM︸ ︷︷ ︸
degradation

− kionkρMI + kioffÎ︸ ︷︷ ︸
inhibitor binding

− kaonkρM(1− M̂) + kaoffM̂︸ ︷︷ ︸
anchor binding

(1a)

∂I

∂t
= D∇2I + kisrcCI − kdegI − kionkρMI + kioffÎ (1b)

∂M̂

∂t
= −kaonkρM(1− M̂)− kaoffM̂ − kdegM̂ (1c)

∂Î

∂t
= kionkρMI − kioffÎ − kdegÎ (1d)

CM = CI ∈ {0, 1}, (1e)

where D denotes the diffusion coefficient, kmsrc and kisrc
denote production rates for morphogen and inhibitor, and
kdeg the degradation rate, which is assumed to be equal for
all chemical species. Further, kion and kaon denote the bind-
ing rates for the inhibitor (i) and anchor binding (a), kioff
and kaoff define release rates, and kρ describes an effective
concentration of the anchor cells. Due to limited knowledge
about the parameter values, the computational model was
designed to be as simple as possible while reproducing
the experimental results qualitatively. In Toda’s model,
the spatial domain is divided into three parts: secreting
poles for the morphogen (green compartment on the left
in Fig. 1D at t0) and the inhibitor (pink compartment
on the right) at opposing ends and a central body in the
middle. For the morphogen- and inhibitor-producing poles
only production, diffusion, and degradation are considered.
In our representation, this is realized by setting the switch
parameter CM = 1 inside the morphogen-producing pole
and CM = 0 elsewhere. Similarly, we set CI = 1 inside the
inhibitor-producing pole and CI = 0 elsewhere. Binding
reactions in the poles are suppressed by setting kρ = 0.
Zero Neumann boundary conditions prevent a flow out of
the system boundaries. All concentrations are initialized
at zero.
The concentration of anchor-bound morphogen, M̂ , is the
primary readout of this model. It serves as a proxy for
the receptor cells’ transcriptional response, leading to the
production of mCherry. For numerically solving the above
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Fig. 2. Extension of the synNotch platform in Fig. 1. A: Cells proliferate upon morphogen binding, assuming
a maximal cell density following the Verhulst equation for logistic population growth (Eq. 2). B: Moving from a
1D to a 2D model opens up an avenue to design synNotch circuits that exhibit predefined patterns. Rectangles
correspond to simulation compartments that are used for numerically solving our model (Eq. 3). C: Design variables
include the type of cell circuits that define the overall behavior of single- or multiple-cell interactions, the initial
cell numbers, and the arrangement of cells in a 2D space.

system of equations on a computer, its derivatives have
to be discretized. To this end, we divide the spatial and
temporal dimensions into simulation compartments. We
assume all molecules in each compartment are well-mixed.
Diffusion occurs as exchange between directly neighbour-
ing compartments following von Neumann neighborhood.
The diffusion coefficient is scaled according to the num-
ber of simulation compartments. The derivatives are then
approximated by finite differences, leading to a solvable
system of equations. This well-established approach of dis-
cretizing partial differential equations is used throughout
this article.

2.1 Model augmentation

We revise and extend Toda’s model in four different
aspects.

Firstly, our model allows for the diffusion of the morphogen-
inhibitor complex Î. Since both the morphogen and the
inhibitor diffuse individually, this should not change when
they bind to each other.

Secondly, our model enables us to encode different intracel-
lular response circuits triggered by anchor-cell-morphogen
complexes. Exemplary, our model couples morphogen
binding not only to mCherry production but also to cell
proliferation (Fig. 2A). Cell proliferation can be triggered
by modulating transcription of pathway proteins that play
a role in the cell cycle, e.g. MAPK pathway or the Notch
pathway itself (Duronio and Xiong, 2013). Our primary
motivation for introducing morphogen-triggered cellular
proliferation as the first of our synthetic building blocks is
the creation of steeper mCherry expression gradients. The
ability to create steep morphogen gradients is interesting,

as these gradients allow for the precise triggering of cellular
responses. If proliferation is triggered predominantly in
compartments with high morphogen concentrations, this
further reinforces morphogen binding by increasing the
number of available binding sites in these compartments
and thus represents a self-reinforcing feedback loop.

To integrate cell proliferation into the model, we explicitly
introduce variables that describe the densities of the dif-
ferent cell types. The variables CM , CI , CA, CM̂ represent
morphogen-producing-, inhibitor-producing-, anchor- and
receiver-cells, respectively. As before, we assume anchor-
and receiver-cells to be present in equal numbers and
therefore set CA = CM̂ . Based on the Verhulst equa-
tion (Verhulst, 1938), the time-evolution of receiver cells
CM̂ is described by

∂CM̂

∂t
= µM̂

(
1−

CM̂

Cmax

)
, (2)

where µ is the proliferation rate and Cmax is the maximum
cell density that is approached logistically. The maximum
cell density is motivated by considering the physical size
of each simulation compartment and the expected size of
the considered cell type. If we consider the experimental
scale to be 82 mm2 (Toda et al., 2020) and the area one
cell occupies to be 165 µm2 (Milo and Phillips, 1938), then
a completely occupied simulation compartment contains
about 400 cells. Proliferation is only induced by the mor-
phogen, which is described with a proportionality to M̂ .
We note that Verhulst dynamics also allows for a decrease
in cell density, which could be interpreted as cell death, in
the case of an over-saturation of CM̂ > Cmax. In our model
this can only occur when the initial cell seed is higher
than the maximum cell density. With the augmentations
highlighted in blue, the revised model equations read
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∂M

∂t
= D∇2M︸ ︷︷ ︸

diffusion

+ kmsrcCM︸ ︷︷ ︸
production

− kdegM︸ ︷︷ ︸
degradation

− kionMI + kioffÎ︸ ︷︷ ︸
inhibitor binding

− kaonM(CM̂ − M̂) + kaoffM̂︸ ︷︷ ︸
anchor binding

(3a)

∂I

∂t
= D∇2I + kisrcCI − kdegI − kionMI + kioffÎ (3b)

∂M̂

∂t
= kaonM(CA − M̂)− kaoffM̂ − kdegM̂ (3c)

∂Î

∂t
= D∇2Î + kionMI − kioffÎ − kdegÎ (3d)

CM = CI = const. (3e)

∂CM̂

∂t
=

∂CM̂

∂t
= µM̂

(
1−

CM̂

Cmax

)
. (3f)

The third and fourth augmentations affect the physical
geometry of the simulated reaction system. In particular,
our third augmentation extends the spatial domain to
two dimensions, as visualized in Fig. 2B. The Laplacian
∇2M in two Cartesian coordinates x and y resolves to
∂2M
∂x2 + ∂2M

∂y2 . Further, instead of an effective concentration

kρ dependent on pole and body regions and the switch
parameters CM and CI being either zero or one, the
reaction rates in our augmented model depend on the
cell concentrations (CM , CI , CA, CM̂ ) per simulation
compartment. The initial cell concentrations become part
of the initial conditions. Concentrations of M , M̂ and
I are initialized at zero. We also assume zero Neumann
boundary and von Neumann neighbouring conditions.

Thus, conceptually, pole and body regions are in this
framework solely characterized by the cell type(s) present
in the respective simulation compartments rather than by
boolean variables. The spatial modeling flexibility achieved
by combining all our model augmentations is demon-
strated in Fig. 2C and includes different cellular responses
via different circuits, variations in cell densities, and dif-
ferent cell arrangements.

2.2 The augmented model reproduces the experimental
data

The changes made in the model, in particular, the coupling
of production rates to cell densities, require an adjust-
ment of the model parameters so that the augmented
model reproduces the experimental data just as well as
the original model. This was already easily achieved by
manual adjustment, and all parameter values used for this
article’s simulation results are reported in Appendix A. A
comparison of our simulation with the experimental data
from Toda et al. (2020) is depicted in Fig. 3A, demonstrat-
ing that our model is indeed capable of reproducing the
experimental data.

By adding an inhibitor pole to the right end of the sim-
ulation domain, the model produces a steeper mCherry
expression gradient (Fig. 3B). At the same time, the over-
all signal readout is lowered as a fraction of the morphogen
M is sequestered by the inhibitor I, forming a complex Î.
Since this diffusing complex Î can also dissociate back into
its parts, the morphogen gradient M is flatter and more

Fig. 3. The augmented model reproduces the exper-
imental results. A: Augmented simulation model
without proliferation (µ = 0) vs. experimental results
presented by Toda et al. (2020) in their Figure 1D.
As the experimental readout is an arbitrary fluores-
cence intensity for the mCherry signal, the simulation
output was normalized at x = 0 to the experimental
data. B: The addition of an inhibitor pole at xend

results in a steeper gradient and shifts mCherry (M̂)
readout away from the inhibitor pole. The shift is
more pronounced with a strong inhibitor binding rate
(kion = 6 ·10−4) compared to a weak inhibitor binding
rate (kion = 6 · 10−5). Individual dots represent the
value of one simulation compartment.

diluted than with a non-diffusing complex. The steepness
of the mCherry gradient is influenced by the inhibitor rates
kion and kioff. A smaller kion shifts the gradient slightly away
from the inhibitor source while a stronger inhibitor gives
a more pronounced shift (Fig. 3B).

Summarizing, our augmented model is able to reproduce
the experimental findings from Toda et al. (2020).

2.3 Addition of a proliferation function to the circuit
allows for steeper gradients and amplifies the readout
signal

After successfully reproducing the original model pre-
diction, we harness the extended capabilities of the
augmented model. The time-evolution of the readout,
mCherry, in one spatial direction x for an early (tstart),
intermediate (tmid) and late (tend) time-point of the simu-
lation with and without cellular proliferation are compared
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Fig. 4. Morphogen-triggered proliferation amplifies
the signal and results in a steeper gradient. A:
Morphogen M and trapped morphogen M̂ gradients
at an early (tstart), intermediate (tmid) and late
(tend) time-point of the simulation for a constant cell
density. B: Morphogen M and trapped morphogen
M̂ gradients with M̂ -dependent logistic proliferation
leads to M̂ signal amplification and a steeper gradient.

in Fig. 4. More specifically, one simulation keeps a constant
anchor density of 15 cells per compartment (Fig. 4A), while
in another simulation anchor cells were allowed to prolif-
erate from an initial density of 15 cells per compartment
following our proliferation function (Fig. 4B). As expected,
the simulation including proliferation strongly amplifies
the mCherry signal. Moreover, it produces a much steeper
mCherry expression gradient, especially close to the mor-
phogen source on the left of the spatial domain, as the
anchor density and, thereby, the concentration of possible
binding sites locally increases (Fig. 4B). This demonstrates
that using this cellular proliferation model building block
is convenient to achieve steep, nearly switch-like gradients.

2.4 Towards modeling morphogenesis: Higher dimensions
and involved geometries

So far, we considered only 1D simulation domains. How-
ever, morphogenesis is particularly interesting in higher
dimensions, as the cells can form a wide variety of different
patterns. Accordingly, our 2D simulations concentrate on
dynamics where cell seeds can be placed arbitrarily in
space. Finding suitable parameters to form a defined shape
in 2D is non-trivial and will also heavily depend on the
chosen initial conditions. The initial spatial cell seed for

Fig. 5. Exemplary simulation of the fully augmented
model in 2D. A: Initial conditions are plotted
as blocks hovering over the surface plot. Green re-
gions correspond to compartments with morphogen-
secreting cells, purple areas encode inhibitor-secreting
cells. Both secreting cell types are present in the top-
right corner. The surface plot shows the morphogen
gradient at the end of the simulation. B: Signal read-
out, mCherry gradient.

the 2D simulation results depicted in Fig. 5 is indicated by
the purple and green areas above the coordinate system.
The surface plots show the morphogen M and mCherry
M̂ gradients in 2D at the end of the simulation. We were
able to generate steep gradients in two dimensions and
a non-trivial pattern of mCherry expression that forms
directionally.

3. DISCUSSION & CONCLUSION

Advances in synthetic biology promise to enhance our
understanding of biochemical processes and allow for their
precise manipulation. Supported by sophisticated simula-
tion models, these advances can be achieved faster and
cheaper.

The established model introduced by Toda et al. (2020)
describes a synthetic Notch circuit that mimics the be-
havior of morphogens. Here, we have proposed a versa-
tile extension of their model. While the original model
mainly reports morphogen binding to receptor cells, our
model can encode an actual cellular response triggered by
morphogen exposure. As an exemplary building block, the
morphogen modeled in this paper triggers proliferation,
which is limited by the available space for an individual
cell. Our simulation results suggest that a circuit with a
morphogen-initiated proliferation response creates a steep
morphogen and mCherry gradient and thus has a similar
effect as adding an inhibitor, as realized in Toda et al.
(2020).

In addition, our framework also offers great flexibility in
designing a heterogeneous 2D physical domain in which
different cell types interact to form complex patterns. This
enables the study of complex 2D geometries resembling
biological geometries of interest or entirely new ones.

Our vision of designing synthetic systems that mimic
specific features of morphogenesis in silico is a challenging
inverse problem. First, from a modeling perspective, this
involves tailored experiments and calibration of the model
to experimental data, which is itself a computational
challenge (Wagner et al., 2024), as well as validation of the
model’s predictive capabilities. Second, the design space
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including geometric arrangements and circuit tuning must
be adapted to the experimental possibilities and carefully
defined in order to be able to solve the design problem
from a computational point of view.

We already outlined many interesting aspects of our aug-
mented model. However, it is only a first step, paving the
way for future research. For example, we have to consider
an exchange of cells between simulation compartments due
to overgrowth or detachment and reattachment after maxi-
mum cell density is reached, which contributes to effective
directed growth rates. Also the simplifying assumptions
that the densities of the anchor and the receiver cells
are equal and that the mCherry signal directly reflects
bound morphogen limit our system. Functionally decou-
pling these cell types as well as considering further sensory
receptor systems (Manhas et al., 2022) and intermediately
produced species will allow for even more complex pat-
terns. Our goal is to harness the ability to iteratively add
further functional modules related to morphogenesis such
as an ultrasensitive transcriptional response to the mor-
phogen gradient (Cotterell and Sharpe, 2010) or varying
degradation and diffusion rates (Shilo and Barkai, 2017).
This will hopefully aid in the design of more complex
patterns and understanding of morphogen signaling during
embryonic development from the bottom up.

In conclusion, the extended modeling framework presented
in this work outlines and highlights the possibilities of
sophisticated simulation models in the context of synthetic
biology and, more precisely, morphogenesis. At the same
time, further model facets are imaginable, and we are
curious to test the chances, challenges, and limits in
different future research avenues opened by this work.
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4. IMPLEMENTATION AND CODE AVAILABILITY

All simulation results presented herein are implemented in
Julia (Bezanson et al., 2017) and can be accessed through
our FAIRDOM Hub repository
(https://fairdomhub.org/studies/1259). We used our own
finite differences implementation to discretize all deriva-
tives over equidistant grids of Nx = 31 compartments
in 1D and Nx · Ny = 312 = 961 compartments in 2D.
Simulation parameters are reported in Appendix A.
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Appendix A. PARAMETER VALUES

Parameter Fig. 3A Fig. 4 Fig. 5

kmsrc 0.09 0.09 0.057
kisrc 0.06 0.06 0.06
kion 0.0 0.0 0.7
kioff 0.0 0.0 0.5
tmax 960 960 960
Cmax 400 400 400
µ 0 0.1 2.0
Nx 31 31 31
Ny 31 31 31
kaon 0.0006 0.0006 0.006
kaoff 0.9999 0.9999 0.9999
kdeg 0.02 0.02 0.02
D 0.02 0.02 0.1
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