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Abstract: Genome-wide association studies (GWAS) have been valuable for the identification of genetic 

factors associated with complex diseases or traits. GWAS findings can be enhanced if analysed in the 

context of protein-protein interaction (PPI) networks, as the related pathophysiology results from 

dysfunction of interacting polyprotein pathways. In a recent study, we reconstructed the PPI network of 

blood pressure regulation (BP) based on a systematically-curated GWAS meta-database and network 

extension principles. Our meta-database enables the selection of GWAS-data of different ancestries 

and/or different Ensembl-defined transcript consequence severities. Thus, this study aimed at 

investigating any differences in the BP PPI network, due to (a) ancestry, by comparing the most-abundant 

European and Asian ancestry GWAS datasets, and (b) variant consequence severity, by excluding single 

nucleotide polymorphisms (SNPs) involved only in “modifier” categories, of difficult to predict impact. 

We identified that 82% of the collected BP-SNPs are from European-specific studies, with only 11% 

from Asian-specific, validating the need to augment the GWAS-data from other than European ancestries. 

Thus, only 7% vs 83% of the 1170 BP GWAS-proteins originate from Asian- and European-specific 

studies, respectively, with 2% (24) identified as Asian-specific vs ~45% (524) as European-specific 

GWAS-proteins. In the second part of the study, we found that the vast majority (85%) of the BP-SNPs 

with protein-coding transcript consequences are only intron variants (‘modifier’ category). Hence, the PPI 

network based on the SNPs in other than “modifier” categories included 142 proteins, with 12 in the 

largest connected component. However, while the relevant interactome is much smaller than the full, 

when extended based on our shortest-path approach, it revealed the same BP-significant pathways. This 

result supports the need to upgrade the information content of GWAS-data through network analysis.  

Keywords: Blood pressure regulation, GWAS, Human protein–protein interactions, PPI network analysis, 

Network Medicine

1. INTRODUCTION 

Since the late 2000s, genome-wide association studies 

(GWAS) have served as a crucial tool in genomic analysis 

and have contributed to furthering our understanding of the 

genetic basis of complex traits and phenotypes by uncovering 

a plethora of associated genetic variants (Hettiarachchi and 

Komar, 2022). Network biology and medicine studies have 

demonstrated in recent years that the information content of 

GWAS data can be significantly upgraded if analysed in the 

context of biomolecular networks, e.g. (Yan et al., 2017; 

Ratnakumar et al., 2020; Tsare et al., 2024), as the 

investigated physiology is the result of multiple interacting 

pathways. In a recent study of our group (Tsare et al., 2024), 

we reconstructed the protein-protein interaction (PPI) 

network of blood pressure regulation (BP), using a 

systematically literature-curated GWAS meta-database that 

we developed, while extending it by a proposed shortest-path 

approach. Network analysis revealed BP-significant 

pathways, while a prioritized protein-set was identified and 

ranked by an integrated set of GWAS- and network-based 

criteria. 

Despite the remarkable progress of GWAS, a major 

limitation remains the limited representation of individuals of 

non-European ancestry. The majority of the collected 

samples and the SNP microarrays constructed to-date 

represent genome-wide genetic diversity corresponding 

mainly to populations of European ancestry (Loos, 2020). 

The only other ancestry that corresponds to an increasingly 

large GWAS dataset are Asians (Fitipaldi and Franks, 2023), 

while there exist substantially limited data for the African 

ancestry. Our BP GWAS meta-database enables the selection 

of ancestry-specific studies and corresponding single 

nucleotide polymorphisms (SNPs). Another characteristic of 

our BP GWAS-data curation is that we have associated the 

collected SNPs with all their transcript consequences 

independently of severity. Ensembl (Martin et al., 2023) has 

defined a list of variant consequences, of decreasing level of 

severity (high, medium, low) for coding regions, along with 
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“modifier” variant categories, identified mainly as non-

coding variants or associated with non-coding genes and of 

difficult to predict or unknown impact. A characteristic of 

GWAS that is still valid today is that the majority of the 

identified susceptibility variants are indeed mapped in non-

protein coding regions, such as intergenic or intronic regions 

(Maurano et al., 2012). The main GWAS data repository, 

GWAS Catalog (Buniello et al., 2019), opts to store for each 

SNP only the most severe transcript consequence. We 

support that including all transcript consequences for a SNP 

increases the information acquired by the GWAS data, 

especially in an era where we are still investigating the 

impact of most identified variants. By its structure, our BP-

GWAS meta-database enables us to search for differences in 

the resulted PPI network if certain variant consequences are 

considered compared to the full dataset.  

In this context, in this study, we aimed at investigating 

further the BP PPI network, resulting from the GWAS data 

with respect to (a) ancestry-specific differences, focusing on 

the two most abundant GWAS sub-sets, i.e. of the European 

and the Asian ancestries, and (b) the variant consequence 

severity, excluding SNPs that are involved only in “modifier” 

categories. 

 

2. METHODS 

2.1 GWAS data 

The BP GWAS meta-database developed by our group (Tsare 

et al., 2024) was used to retrieve the GWAS data based on 

the ancestry of the involved individuals and the variant 

consequence severity. To obtain clear results, we selected 

only ancestry-specific studies, combining also ancestry sub-

groups (e.g. East Asians, South Asians, etc.). If an ancestry is 

mentioned only in the context of mixed ancestry studies, it 

was not considered as a separate group (i.e. Hispanic or Latin 

American). SNPs associated only with mixed (complex)-

ancestry studies are included in the ‘Other’ ancestry group. It 

is noted that SNPs associated with individuals of European or 

Asian or African ancestries are present in the ‘Other’ 

category, but since they cannot be clearly assigned to specific 

ancestries, they are not considered in the ancestry-specific 

analysis. For the transcript consequence severity analysis, we 

excluded all BP-associated SNPs that have been 

characterized as ‘modifier’ variants based on Ensembl 

(version 97). The ancestry-specific BP GWAS-protein sets 

were compared with the full set of 1170 proteins (Tsare et al., 

2024). 

2.2 PPI networks  

Ancestry-specific GWAS-deduced PPI networks were 

extracted from the full PPI network (Tsare et al., 2024) and 

compared. Similarly, the GWAS-deduced PPI network of the 

proteins associated with the BP SNPs in the new severity 

threshold group was reconstructed. To investigate how 

different the full BP-associated PPI network is in this case, 

we proceeded with extending the GWAS-deduced 

interactome with the shortest PPI paths that connect all 

proteins in one component. More details about the used 

algorithm are provided in Tsare et al., 2024. All PPI 

networks are based on the human protein interactome of the 

PPI meta-database PICKLE v.2.4 (www.pickle.gr) (Klapa et 

al., 2013; Gioutlakis et al., 2017; Dimitrakopoulos et al., 

2021, 2022). in which the experimental PPIs in human are 

integrated in the context of the genetic information ontology 

network of the UniProt/SwissProt-defined reviewed human 

complete proteome (RHCP) (https://www.uniprot.org/). 

2.3 Network and Pathway Enrichment Analysis 

PPI network visualization was carried out using Cytoscape 

version 3.8.2 (https://cytoscape.org/) (Shannon et al., 2003). 

Network analysis was carried out with the relevant Cytoscape 

plugin. Pathway enrichment analysis was performed using 

the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) Knowledgebase v2023q4 

(https://david.ncifcrf.gov/) (Sherman et al., 2022). 

 

3. RESULTS AND DISCUSSION 

3.1 BP-GWAS data analysis based on ancestry  

Our BP GWAS meta-database (Tsare et al., 2024) records 

6687 SNPs (SNP-trait association p-value < 5x10-8). From 

these SNPs, 82% (5495), ~11% (727) and only 1% (86) have 

been, respectively, identified in European, Asian and African 

ancestry-specific studies (Table 1). This result was expected 

as the largest studies conducted so far involved mainly 

European-ancestry individuals, while the next relatively well-

represent descent in the GWAS is the Asian (including all 

sub-groups), while the African ancestry cohorts have so far 

been very limited. 

Table 1. Ancestry-based BP-GWAS data statistics 

 

Total 

p<5x10-8 

RHCP-protein coding 

p<5x10-8 

Ancestry 
#SNPs 

(specific) 

#SNPs 

(specific) 

#Proteins 

(specific) 

African 86 (37) 25 (12) 23 (8) 

Asian 727 (145) 373 (70) 86 (24) 

European 5495 (1943) 3110 (1054) 976 (524) 

Other 4544 (951) 2592 (526) 617(167) 

Note: The data correspond to studies that were specific to each of the 

depicted ancestries. Other involves mixed-ancestry studies. Specific 

depicts #SNPs or #proteins that have been identified as BP-related in the 
particular ancestry only. 

 

As anticipated, the relative numbers between ancestries are of 

similar differences, when the associated proteins are 

considered. Specifically, of the 1170 RHCP-proteins 

associated with the BP-SNPs (Tsare et al., 2024), the vast 

majority (83%, 976) originate from European ancestry-

specific studies, while 7% (86) and 2% (23), respectively, 

from Asian-specific and African-specific studies (Table 1). 

Furthermore, by comparing the GWAS-protein sets of the 

two most represented descents, with the rest considered in a 

third (Other & African) group, we observed that ~45% of the 

BP GWAS-proteins (524) have been identified as BP-related 

only in individuals of European ancestry, while the respective 

numbers for the Asian and African ancestry are 24 and 8, 

respectively (Table 1, Fig. 1). Finally, 59 GWAS-proteins 
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have been identified as BP-related in both European and 

Asian descent individuals, with 5 have not been identified in 

any of the other mixed or African ancestry studies (Fig. 1). 

More GWAS on other than the European ancestries are 

needed to validate any ancestry-specific variants or proteins. 

Still the results are important in pointing out some genetic 

differentiation between ancestries with respect to BP. 

 

Figure 2 shows the BP-related interactomes of the GWAS-

protein sets that were identified only in European-specific or 

Asian-specific studies (Figs. 2B, 2C, respectively), compared 

to the full BP GWAS-deduced PPI network (Fig. 2A). In the 

latter network, the protein-nodes that were connected in a 

large component were named “blue nodes” (BNs), while the 

rest were named “green nodes” (GNs) (Tsare et al., 2024). As 

anticipated, the vast majority of BNs and GNs are part of the 

European-related PPI network and consequently, same is true 

for the PPIs. Actually, the European-related GWAS-deduced 

PPI network is similar to the full interactome, and its four 

most connected proteins, i.e. P53, ESR1, UBC9 and SMAD3, 

are also hubs of the full network. This is not of course the 

case for the Asian-related network, in which only 44, 32 and 

7, respectively, BNs, GNs and PPIs of the full network are 

included. 

 

The European-specific BP GWAS-protein set (Fig. 2D) 

includes almost half of the nodes of the full network, i.e. 301 

out of 672 BNs and 173 out of 393 GNs, but the 186 BNs 

that remain connected interact only through 293 (17% of 

1707) edges. Interesting, the protein with the highest number 

of interactions in the European-specific BP GWAS-deduced 

PPI network is Ataxin 1 (ATX1), mainly associated with 

neurodegenerative diseases (Ma and Didonna, 2021) and 

recently linked with BP (Wang et al., 2023).  

 

 

 

In Tsare et al., 2024 we identified 335 proteins as BP-

significant based on GWAS-based and network-based 

criteria, 124 of which are GWAS-proteins. Of these 124, 117 

are identified in European-specific studies, including the top-

10 prioritized: ESR1 INSR, PTN11, CDK6, CSK, NOS3, 

SH2B3, ATP2B1, FES, FINC and thirty-four are identified in 

Asian-specific studies, from which FES and FINC belong to 

the common protein-set between the two ancestries. 

Furthermore, 12 of the prioritized proteins (VAC14, CCN3, 

PDILT, MK01, HSP74, RAF1, FBW1A, TAU, LATS2, 

NCOR2, PTEN, XRCC6) are identified as European-specific 

and one prioritized protein (HDAC4) as Asian-specific. 

Investigating any known BP-association of the European-

specific BP-prioritized GWAS-proteins, we identified five 

involved in BP-related pathways: FBW1A (Hippo pathway), 

LATS2 (Hippo and Wnt pathway), PTEN (insulin resistance, 

diabetic cardiomyopathy), RAF1 (cGMP-PKG, cAMP, PI3K-

Akt and insulin signaling pathways) and HSP74 (lipid and 

atherosclerosis). The role of HDAC4 in the hypertension 

pathology has already been discussed (Tsare et al., 2024). 

 

 

 

Pathway enrichment analysis was performed on the 

European-specific, Asian-specific and common datasets, 

investigating any ancestry-specific BP mechanisms based on 

the available GWAS data so far. Thirty KEGG-defined 

Figure 2. The full (A), European-related (B), Asian-related (C), 

European-specific (D), and Asian-specific (E), BP GWAS-

deduced BP PPI Networks. Blue nodes (BNs) and green nodes 

(GNs) are named and respectively colored in network (A) the 

proteins that are connected in one component (BNs) and the rest 

(GNs). All protein nodes in (B) and (D) are shown in pink, 

whereas protein nodes in (C) and (E) are shown in yellow. 

 

Figure 1. Venn diagram of the BP-GWAS proteins based on 

ancestry.  
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pathways were significantly enriched (q < 0.05) in European-

specific BP GWAS-proteins. These indeed include pathways 

that have been strongly associated with BP regulation, as the 

renin and insulin secretion, the aldosterone and the cortisol 

synthesis and secretion and the vascular smooth muscle 

contraction pathways, as well as the cGMP-PKG, cAMP, 

PI3k-Akt and estrogen signaling pathways and cell–cell 

junctions, including the Gap junction (Tsare et al., 2024). 

This is not surprising, as many of the BP GWAS-proteins in 

the full dataset have been identified as European-specific. 

The Asian-specific and the common between the two 

ancestry protein sets are small, thus no pathway was 

identified as significantly enriched in any of the two groups 

based on the false discovery rate (q < 0.05) threshold. 

However, using the p-value < 0.05 as significance threshold, 

we identified eleven pathways as enriched in the Asian-

specific BP GWAS-proteins, including the cGMP-PKG and 

PI3K-Akt signaling pathways, the vascular smooth muscle 

contraction and the Gap Junction and five pathways enriched 

in the common proteins of the two ancestries, including the 

calcium signaling, the aldosterone and the cortisol synthesis 

and secretion pathways. These results further support the 

need to analyse the GWAS data in the context of pathways 

and networks unravelling connections and related 

mechanisms even in relatively sparse datasets. 

 

3.2 BP GWAS data analysis based on stricter variant 

consequence severity threshold 

We analysed the 3738 BP SNPs associated with the 1170 

RHCP-proteins with respect to their consequences (Table 2). 

Just 183 SNPs and 157 RHCP-proteins are associated with 

transcript consequences in other than modifier categories 

only. The ‘stop gained’ is the variant consequence of the 

highest severity for the BP SNPs and only five BP SNPs have 

such high impact on five proteins.  

Table 2. RHCP-associated BP-GWAS data statistics based on 

severity level 

Variant consequence 

(impact) 

total #SNPs  

up to the 

particular level 

total #Proteins 

up to the 

particular level 

stop gained (high) 5 5 

inframe deletion (moderate) 6 6 

missense (moderate) 137 118 

splice region (low) 151 130 

synonymous (low) 183 157 

5 prime UTR (modifier) 224 184 

3 prime UTR (modifier) 352 258 

intron (modifier) 3738 1170 

NMD transcript (modifier) 3738 1170 

Note: SNPs may be associated with multiple transcript consequences, thus at 

each level we present the number of unique SNPs or proteins associated with 
consequences up to that level. If all proteins associated with a consequence 

level are also associated with other previous levels, there is no change in the 
total number of SNPs or proteins of this level compared to its previous.  

These are: DPB1, GEM, AMPE, KCNJ11 and ZC21C, of 

which only AMPE is associated with only this type of variant 

consequence. SESQ1 is the only protein in the next variant 

consequence category (‘inframe deletion’) of moderate 

impact. AMPE (glutamyl aminopeptidase) is involved in the 

strongly BP-related renin-angiotensin system (Nehme et al., 

2019). KCNJ11 (ATP-sensitive inward rectifier potassium 

channel 11) has been reported as associated with 

hypertension-induced heart failure (Kane et al., 2006). GEM 

(GTP binding protein) has been shown to regulate the activity 

of the serine/threonine Rho kinases (ROCKs) that play an 

important role in cardiovascular system and hypertension 

pathology (Wirth, 2010). On the other hand, we identified 

that the vast majority of SNPs with RHCP-coding transcript 

consequences (~85%, 3168) are only intron variants 

(‘modifier’ category). As a result, 912 of the 1170 BP 

GWAS-proteins are associated with intron variants and 856 

are considered as BP-related based on this type of SNPs only. 

We proceeded to reconstruct the BP PPI network based on 

the 157 proteins associated with variant consequences in 

other than modifier categories to investigate whether essential 

information about BP regulation is retained even by 

considering only this small fraction of the full BP GWAS 

protein set. The reconstruction process is described in detail 

in (Tsare et al., 2024). We note that 33 of the 157 proteins are 

among the 103 GWAS-prioritized proteins of the full protein 

set (Tsare et al., 2024). The GWAS-deduced PPI network 

includes 142 proteins (with at least one PPI of high-

confidence of being direct in the human protein interactome). 

This comprises of one 12-protein component with 11 PPIs 

(excluding self-interactions), one trimer, few heterodimers 

and many monomers (Fig. 3A). According to our network 

reconstruction process, we consider as “blue nodes” (BNs) 

the 12 proteins in the largest connected component and we 

proceed in extending the PPI network by the shortest paths 

connecting all proteins in one component (Fig. 3B). The 

shortest-path intermediates are named “yellow nodes” (YNs) 

and considered as BP-related. The final “GWAS-

reconstructed by the shortest-path approach” (GWAS-RbSP) 

PPI network comprised 797 protein-nodes (655 YNs) with 

9826 PPIs. As expected by the full BP PPI network, we 

observed that almost all GNs are at most second neighbors of 

a BN. 

 

Network analysis showed that the extended BP PPI network 

reconstructed from the 157 proteins associated with SNPs of 

most impactful transcript consequences follows a scale-free 

structure with a moderate fit (R2 = 74%) (Fig. 4). The P53 

protein (ΥΝ) is the node with the highest number of 

interactions (161), while six more proteins (all YNs) have ≥ 

120 interactors: A4, EGFR, AKT1, UBC, EP300 and ESR1. 

These proteins are also hubs in the full BP PPI network 

(Tsare et al., 2024). Interestingly, proteins P53 and ESR1, 

which are BNs in the full BP PPI network, do not belong to 

the 157 proteins and are YNs in this case. This shows that 

through the ‘guilt by association’ PPI network extension 

principle that we used, they are still identified as BP-related 

and included in the final BP-related protein interactome.  

197



 

 

Pathway enrichment analysis of the BP PPI network based on 

the 157 proteins associated with the most impactful SNPs 

indicated BP-protein enrichment in the most of the same 

pathways as the full BP PPI network, described in Tsare et 

al., 2024, presenting the same perspective despite their 

differences in starting proteins and size. The enriched 

pathways include the cardiomyopathies’ pathways, signaling 

pathways, among which the adrenergic signaling in 

cardiomyocytes and the PI3K-Akt, the cGMP-PKG, the 

cAMP, the HIF-1 and the calcium signaling pathways and 

focal adhesion/axon guidance-related pathways. Additionally, 

the pathways strongly associated with BP including the 

aldosterone synthesis and secretion, the renin-angiotensin 

system, the insulin resistance and secretion and the thyroid 

hormone synthesis are also among the BP-enriched. Finally, 

almost half (176) of the 335 prioritized proteins of the full 

BP-protein set are included in the extended BP PPI network 

derived based on a stricter variant consequence severity 

score.  

4. CONCLUSIONS 

The systematic curation of all available GWAS data for 

particular complex traits or pathophysiologies through the 

development of specialized meta-databases and the analysis 

of GWAS data in the context of PPI networks can 

significantly upgrade the information content of the GWAS 

data, enabling also their investigation based on various 

criteria and parameters. In this study, we identified the 

European- and Asian- specific BP PPI networks, supporting 

the fact that most of the currently available BP-GWAS data 

are based on individuals of European ancestry. Still, although 

scarce, the Asian-specific BP GWAS dataset pointed to 

eleven BP-related pathways, showing that the resolution of 

the BP (de)regulation at the pathway-level is less dependent 

of the GWAS dataset size. As more BP GWAS data from 

other ancestral backgrounds become available, our meta-

database is appropriately structured to enable the selection of 

ancestry-specific GWAS information and contribute to more 

specific studies that may lead to valuable ancestry-specific 

insights about BP. Furthermore, our meta-database enables 

the selection of proteins associated with SNPs of varying 

consequence severity. In this study, we reconstructed the BP 

PPI network starting from the 157 proteins of the most 

impactful SNPs (non-modifier categories). In this case too, it 

was observed that despite smaller than the full PPI network, 

the new network revealed the same BP-significant pathways, 

“recruiting” important BP-proteins that are not in the initially 

considered 157 through the “guilt by association” extension 

principle that we used. Extending upon the work of Tsare et. 

al. (2024), this study also supports the significance of 

integrating genetic with functional knowledge in the context 

of biomolecular networks, as this combined approach 

diminishes the impact of false positives in any of the 

involved datasets. Furthermore, the identified as prioritized 

genes and/or pathways provide targets for experimental 

investigation to prove their functional association with BP.   
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